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by Marek Behr (AHPCRC) and Alan Klietz (AHPCRC-MSCI) 

Recent years have witnessed a vast increase in the number of 
computing platforms which are available to computational 
scientists. A multitude of design paths taken by the computer 
manufacturers in their never-ending quest for high performance 
and rapid programmability have resulted in a wide spectrum 
of CPU, memory and storage architectures.  The choice of the 
optimal computational platform and algorithm for a given problem 
on the part of the numerical analyst has become much more 
important than in the past.  While many applications 
significantly benefit from their adaptation to parallel 
distributed memory computers, some algorithms are inherently 
non-parallelizeable.  Some algorithms, when moved from a vector 
supercomputer to a parallel architecture which they cannot fully 
exploit, suffer major degradation in performance. In this case 
the decision to continue the utilization of such algorithm on a 
traditional supercomputer may be the correct one. 

Large, complex, simulations may require many different algorithms 
to perform the analysis, with sections of the code ranging from 
embarrassingly parallel to unavoidably sequential. It is here 
that the concept of heterogeneous computing may provide a welcome 
alternative to months needed to replace the sequential code, or 
to leaving the entire package, including the easily 
parallelizeable portions, on a non-parallel machine. In 
heterogeneous computation, many kinds of computers may cooperate, 
with each of the machines performing tasks for which it is 
particularly suited. The platforms exchange data utilizing a fast 
network connection. 

One example of an application which may benefit from the 
heterogeneous computing approach is an implicit fluid flow 
calculation with a finite element method.  One of the major tasks 
in this case is the construction of the (typically large) systems 
of equations which represent the fluid unknowns. With a correct 
selection of data structures and a proper initialization step, 
this task can proceed concurrently for all elements of the grid, 
exploiting the fine-grain parallelism inherent in the finite 
element approach. Another time-consuming step is the solution of 
the coupled equation systems. Iterative solution techniques, 
which offer parallelization potential, can only be applied 
in some of the cases. For some equation systems, e.g. those with 
an extremely high condition number, a direct solution method 
might be the only recourse. Unfortunately, implementation of such 
methods on distributed memory computers still poses a challenge, 
and using a vector machine for this step may be preferable. 
Therefore, a heterogeneous program might be decomposed as 



follows: a) the formation of the equation system takes place on a 
massively parallel computer such as the CM-5, b) the components 
of the system are transmitted to a vector machine such as the 
Cray C90, where the system is assembled and solved, and c) the 
solution is transmitted back to CM-5 and used to update the field 
variables and begin the next iteration step. 

There are numerous obstacles to seamless integration of such 
diverse platforms as the CM-5 and C90. High data transfer rate 
between the two machines is essential in order to avoid the 
introduction of another bottleneck obstacle to high performance. 
A High Performance Parallel Interface (HIPPI) network 
interface, available on most high performance computers, provides 
a bandwidth of 100 million bytes per second.  This goes a long 
way towards alleviating the bottleneck.  A HIPPI connection links 
the CM-5 and C90 operated by the Minnesota Supercomputer Center, 
and is used by the AHPCRC researchers.  Another problem stems 
from the fact that binary floating-point data formats used by 
different machines may be incompatible.  In our example, the CM-5 
employs the standard IEEE floating-point representation, the C90 
uses a Cray-specific format, and the Cray T3D makes use of both 
IEEE and Cray formats. Finally, the methods of accessing the 
HIPPI interface are platform- and language-specific, 
causing the codes that attempt to use the native HIPPI libraries 
to become non-portable. 

To simplify access to the heterogeneous computing engines, the 
second author developed the HIPPI/RPC library. The library is 
based on the Remote Procedure Call (RPC) concept. In this 
concept, a program running on a local machine performs a 
subroutine call that is executed on a remote machine. The actual 
arguments included in the subroutine call are transferred over a 
network connection to the remote machine, where they are accessed 
as dummy arguments by the subroutine. After the remote machine 
finishes execution of the subroutine, the modified values of the 
dummy arguments are copied back to replace the arguments in the 
local calling program.  The specification of the remote procedure 
can be expressed using standard Fortran 77 or Fortran 90 
notation. The HIPPI/RPC library is designed to be easy to use, 
allowing the rapid prototyping of new applications. 

All data format conversion and translation, including floating- 
point format conversion, is performed by the system. HIPPI/RPC 
can be used on top of a variety of communication protocols and 
hardware. HIPPI is preferred because of its high performance, but 
TCP/IP over Ethernet or FDDI is also possible. The transport 
selection can be performed at runtime. 

In order to use the HIPPI/RPC interface, the following steps are 
required: a) decomposition of the program into subroutines, some 
of which are executed on one or more remote machines, b) creation 
of a HIPPI/RPC Language (HRPCL) source file to declare the 
arguments of the remote subroutines, c) compilation of the HRPCL 
source file using the hrpcgen protocol compiler, d) compilation 



of the hrpcgen-generated C and Fortran source files, along with 
user files, into the master program on the local machine and the 
server program on the remote machine. After starting the server 
program, the master program can be run. 

The aforementioned example of the finite element fluid flow 
computation was used by AHPCRC researchers Tayfun Tezduyar, 
Shahrouz Aliabadi and the first author, in collaboration with ARL 
researchers Gloria Wren and Steve Ray, to demonstrate the 
HIPPI/RPC capabilities at the Supercomputing 94 conference, 
which took place in Washington, D.C. on November 15-17, 1994. The 
simulation involved the flow inside a regenerative liquid 
propellant gun (RLPG). The master program, a compressible flow 
finite element code based on a stabilized space-time formulation, 
ran on CM-5 and was coupled with a C90 implementation of a 
skyline direct solver. The schematics of the RLPG, and the Mach 
number field inside the combustion chamber at one instant during 
the computation, is shown in Figure 1. Because of their 
dependence on the direct solver, the RLPG simulations are 
typically performed on the C90. The Supercomputing 94 
demonstration showed the possibility of moving the majority of 
the code to the potentially faster CM-5, while keeping the 
modules which do not benefit from parallelism on the Cray C90. 

To learn more about HIPPI/RPC, please refer to the "HIPPI/RPC 
User's Guide", AHPCRC publication UG-0008 9/91 available from the 
AHPCRC by calling (612) 626-1550 or sending an email, with a 
request, staff@ahpcrc.umn.edu 


